
Toward Effective Multi-capacity Resource Allocation
in Distributed Real-time and Embedded Systems

Nilabja Roy, John S. Kinnebrew, Nishanth Shankaran,
Gautam Biswas, and Douglas C. Schmidt

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37203, USA

Abstract

Effective resource management for distributed real-time
embedded (DRE) systems is hard due to their unique char-
acteristics, including (1) constraints in multiple resources
and (2) highly fluctuating resource availability and input
workload. DRE systems can benefit from a middleware
framework that enables adaptive resource management al-
gorithms to ensure application QoS requirements are met.
This paper identifies key challenges in designing and ex-
tending resource allocation algorithms for DRE systems.
We present an empirical study of bin-packing algorithms
enhanced to meet these challenges. Our analysis identifies
input application patterns that help generate appropriate
heuristics for using these algorithms effectively in DRE sys-
tems.

1 Introduction
Emerging trends and challenges. Open distributed real-
time and embedded (DRE) systems form the core of many
mission-critical domains. These DRE systems execute in
environments where system operational conditions, input
workload, and resource availability cannot be fully char-
acterized a priori. DRE system characteristics, such as
multiple resource constraints and significant fluctuations in
resource availability and input workload, make it hard to
maintain end-to-end quality of service (QoS).

Applications in DRE systems often require multiple re-
sources to execute properly, and need timely allocation of
those resources to maintain required QoS. In open DRE
systems, system resource utilization is a function of input
workload and the required QoS of applications, so runtime
utilization may vary significantly from estimated values.
Moreover, system resource availability, such as available
network bandwidth and battery power, may also be time
variant. What is needed are middleware-centric capabilities
to allocate and manage DRE system resources at runtime.
Solution approach → A component-based adaptive re-
source management framework. To address the needs
of DRE systems, we have developed the Resource Alloca-
tion and Control Engine (RACE) [2]. RACE is an adap-
tive resource management framework built atop our CIAO

QoS-enabled component middleware that supports resource
allocation and system adaptation algorithms to manage
DRE system resources at runtime. RACE allocates ap-
plication components to available system resources. Nu-
merous algorithms have been developed, studied, and an-
alyzed for use in resource allocation. For example, Sri-
vastav and Stangier [3] provide a solution to the resource-
constrained scheduling problem, which is related to the
multi-dimensional bin-packing problem.

In particular, bin-packing algorithms provide a natural
solution to many resource allocation problems. The clas-
sical bin-packing problem packs a set of n items into m

bins each with a maximum capacity C, such that the sum
of the items in any bin does not exceed C. In the context
of resource allocation, resources (e.g., processors) form the
bins, and items map to tasks (e.g., components) that require
a specified amount of resources.

This paper presents an empirical study of widely used
bin-packing algorithms, focusing on the applicability of
these algorithms in the context of resource allocation in
DRE systems. For each algorithm, we study and analyze
the following: (1) what extensions are needed to apply it to
DRE system resource allocation, (2) how effective the algo-
rithm is in finding a feasible allocation under stringent time
limitations, depending on the input application characteris-
tics, and (3) how useful additional computation to find an
allocation is for different application characteristics.

2 Resource Allocation Challenges in Open
DRE Systems

Although adaptive resource management frameworks
can help provide greater local autonomy and enhance mis-
sion performance for DRE systems, the following resource
management challenges remain unresolved.

Challenge 1: Selection of appropriate multi-resource
allocation algorithm(s). While work has been done on al-
location by a single measure, (e.g., CPU usage), few algo-
rithms exist for allocating multiple resources (e.g., CPU and
memory usage). Multi-resource allocation is not, in gen-
eral, a straightforward extension of single-resource alloca-
tion. For example, with traditional bin-packing, items are

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.72

124

compared by size, but with multiple resources the appropri-
ate “size” measure is no longer obvious, e.g., it could be the
average, sum, larger, or other combination of the multiple
resource requirements.

The effectiveness of individual resource allocation algo-
rithms also depends on the characteristics of applications
being deployed. In particular, the distribution of component
resource usage in an application—or an entire system—
may be useful in selecting the most applicable resource al-
location algorithm/heuristic. For example, some deploy-
ments may consist entirely of components whose resource
use is small relative to the resources available at each node.
Other deployments may include a mix of relatively large
(in terms of resource use) components and relatively small
ones. Some algorithms are more effective or efficient than
others in finding an allocation for particular distributions of
component resource use. Our results in Section 3.1 evalu-
ate performance patterns that characterize the performance
of heuristics across various input distributions.

Challenge 2: Point of diminishing returns for run-
ning resource allocation algorithms. DRE systems often
operate on strict time constraints and it may be necessary
to terminate the search for an allocation if it takes excessive
computation/time. In that case, a mission planning applica-
tion may be able to provide a new/modified application that
has less stringent resource requirements (while potentially
having lower quality or utility).

As with algorithm selection, determining whether addi-
tional computation may be successful in finding an alloca-
tion can depend on application characteristics (such as per-
centage of components with large resource requirements or
number of components to be allocated), as well as the par-
ticular allocation algorithm(s) used. Our analysis of experi-
mental results in Section 3.2 identifies cases in which addi-
tional computation is unlikely to improve performance.

3 Solution Approach: Integration of RACE
and Resource Allocation Heuristics Based
on Performance Patterns

This section empirically evaluates bin-packing algo-
rithms that RACE uses to make the initial and subsequent
resource allocations. Since complete bin-packing algo-
rithms can be computationally expensive, we study different
heuristic schemes in a multi-capacity bin-packing frame-
work to simplify the allocation task. Our goal is to de-
termine resource allocation heuristic performance patterns,
i.e., the likelihood of a heuristic finding an allocation for
different classes of input. RACE uses these performance
patterns to (1) select appropriate resource allocation algo-
rithms based on the input data set at runtime and (2) deter-
mine how much computation to expend on each.

3.1 Resolving Challenge 1: Selection of Appropri-
ate Multi-resource Allocation Algorithm(s)

Problem. RACE allocates available resources to compo-
nents based on allocation algorithms/heuristics. If the rel-
ative performance of these allocation algorithms is known
for particular distributions of component resource usage,
RACE can choose the one(s) most effective at allocating ap-
plications in the system. Moreover, dynamically choosing
the set of applicable algorithms/heuristics can make certain
DRE systems even more efficient and effective in finding
allocations. The patterns of performance for the available
heuristics must therefore be identified across a variety of
input distributions.

Solution → Empirical comparison of heuristic perfor-
mance. To determine the performance of multi-capacity
extensions to common bin-packing heuristics, we ran a se-
ries of experiments with problems drawn from various input
distributions. These experiments used two-capacity bins,
applicable to the case of system nodes with two resource at-
tributes, such as CPU and memory. The performance met-
rics considered are “number of successes” in a fixed num-
ber of runs. The extension to additional resources for these
heuristics is straightforward from the two-capacity imple-
mentation. We set the size of each of the two bin capacities
to 100, representing 100% of the resource. In analyzing
the results, we consider three orthogonal dimensions to the
cases being tested, as described below.

• Heuristic is the performance of each algorithm/-
heuristic on the generated problems. We evaluate the exten-
sions to multi-capacity bin-packing of the popular best-fit,
first-fit, and worst-fit heuristics.

• Sorting method is the method used to sort the items
before applying the above heuristics. Sorting items by de-
creasing size before packing the bins often provides better
performance in traditional bin-packing. In our experiments,
items are also sorted in decreasing order of size, but be-
cause the problems are multi-capacity ones, the sorting cri-
teria is non-trivial. Several definitions for a scalar size value
(combining or comparing the multiple dimensions) could
be used, including sum, product, sum of squares, and max-
imum component. Our current experiments focus on two
scalar definitions of size: sum and maximum component.

• Item distribution is the characterization of the distri-
bution from which item sizes are drawn. Different solution
methods and heuristics may be more/less applicable to par-
ticular item size distributions. One goal of our experiments
is to determine if/when these heuristics are more effective
based on characterization of input item sizes. For these ex-
periments we used uniform distributions with various mean
values. We also compared across the total amount of slack
between the capacities of the bins and the sizes of the items.
For example, a problem with 10 bins of capacity (100,100)
and a slack of exactly 10 percent in each dimension, would

125

have a set of items whose sizes sum to (900,900).

3.1.1 Problem Generation
Three input parameters characterize the problems generated
for a given set of test runs: (1) number of (100,100) capac-
ity bins, (2) range of item sizes, and (3) percentage slack
allowed (as a range) in the generated problems. These ex-
periments use two-capacity bins/items, with the item’s size
in each dimension independently drawn from uniform dis-
tributions. For example, with 10 bins, 0-70 for item sizes,
and 5-10 as the allowable percentage of slack, the set of
problems generated would have items with an average size
of ∼35 in each resource and total size for the sum of items
would be between 900 and 950 in each resource.

To generate the problems, we used rejection-
sampling [1], which samples from an arbitrary distribution
f(x) using some standard distribution g(x) that is easy to
sample. We generated items with the constraint that the
sum of the item sizes should be less than the sum of all
bin capacities by an amount within the range of allowable
slack. Items were generated from the specified distribution
until their sum was within the allowable range of slack or
was greater than the maximum value, in which case that
set of items was rejected. The generated set of items thus
meets global bin capacity constraints, but a valid allocation
is not guaranteed, i.e., the problem may or may not be
solvable.

We generated 10,000 instances of the problems that were
run with the different heuristics. The number of bins used
was 4 because using more bins made the running time of the
complete algorithm too large to generate results in a rea-
sonable amount of time. The running time was primarily
a problem for distributions with smaller average item size
because there were more items in total. For the other dis-
tributions, we also performed the experiments with 10 bins
and obtained results that followed the same patterns identi-
fied in the 4 bin experiments presented here.

Figure 1 shows a representative frequency distribution of
the item sizes in one of the two dimensions for a problem
with 0-100 item distribution and slack between 0% and 5%.
The problem sets for the other distributions and slack values
also closely match their specified uniform distributions and
are not included.

3.1.2 Analysis of Results
Figure 2a shows the relative performance of the different
heuristics with a uniform distribution of item sizes between
0 and 100 for each dimension. This result shows that the
best-fit and first-fit heuristics outperform the worst-fit ones
overall (for this distribution). Moreover, the choice of sort-
ing criteria does not make a large difference, as shown by
the similar results for both sum and maximum component
sorting when used with each heuristic.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Item Values

N
o

 o
f

It
e

m
s

CPU Memory

Figure 1: Distribution of Items (0-100 range)

The results for the items with ranges 0-70 and 0-30
show the same patterns, and are presented in the Figures 2b
and 2d. The results from the 0-50 distribution exhibit a
slightly different behavior as shown in Figure 2c. For these
problems, there is a significant difference in performance
between sorting criteria, with the sum sorting criteria out-
performing the maximum component sorting criteria.

The results for these experiments clearly show a perfor-
mance pattern for each heuristic across different input dis-
tributions, which RACE exploits during runtime resource
allocation. For example, if the input distribution is roughly
uniform with a mean item size of 25, these results would di-
rect RACE to first employ the best-fit heuristic with sorting
based on sum of the items, before expending computation
on the other heuristics. Conversely, for uniform distribu-
tions with a mean item size near 50, RACE would prefer to
first try the first-fit heuristic with sorting based on maximum
component size.

3.2 Resolving Challenge 2: Point of Diminishing
Returns for Running Resource Allocation Al-
gorithms

Problem. The set of multi-capacity bin-packing heuris-
tics tested in these experiments make a single attempt at
finding an allocation. Extending these heuristics (e.g., with
backtracking or local search), however, is likely to pro-
duce better results in many cases at the cost of additional
computation. Still, this is not consistently the case across
all input distributions tested. RACE must therefore deter-
mine whether additional computation would significantly
enhance its chance of finding a solution.

Solution → Empirical study of heuristics performance
on solvable problems. Determining where additional
computation can and cannot yield better performance re-
quires further analysis of our experimental results. By iden-
tifying which input distributions yielded relatively low rates
of success relative to total solvable problems, we can find

126

0

500

1000

1500

2000

2500

3000

3500

0 - 5 5 - 10 10 - 15 15 - 20

N
o
 o

f
S

u
c
c
e
s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(a) Item Range 0-100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 - 5 5 - 10 10 - 15 15 - 20

N
o

 o
f

S
u

c
c
e

s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(b) Item Range 0-70

0

2000

4000

6000

8000

10000

12000

0 - 5 5 - 10 10 - 15 15 - 20

N
o
 o

f
S

u
c
c
e
s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(c) Item Range 0-50

0

2000

4000

6000

8000

10000

12000

0 - 5 5 - 10 10 - 15 15 - 20

N
o
 o

f
S

u
c
c
e
s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(d) Item Range 0-30

Figure 2: Performance Comparison of Different Heuristics

Item Size % Slack
0 - 5 5 - 10 10 - 15 15 - 20

0 - 30 34.84 97.96 99.97 100
0 - 50 10.57 65.49 96.14 99.67
0 - 70 26.44 65.68 93.02 99.14
0 - 100 100 94.93 99.34 99.64

Table 1: Success Rate of Heuristics on Solvable Problems

the cases in which additional computation would likely ben-
efit heuristic performance. Table 1 summarizes the com-
bined performance of the heuristics on the solvable prob-
lems from each distribution. To determine whether a so-
lution existed for each problem, we implemented a com-
plete algorithm that searched all combinations for packing
the items. Due to the running time of this algorithm, we
limited the number of bins in the experiment to 4.

The success rate of the heuristics (computed for the sub-

set of problems for which there existed a valid allocation)
varies with the distribution ranges as well as with the slack
in the bins. It is clear from the results that the heuristics
perform quite well when the slack is relatively large (i.e.,
greater than 10%). When there is very little slack (i.e., 0-
5% slack), however, the heuristics mostly perform poorly,
with performance increasing with greater slack.

The exception to this trend is the 0-100 range items
where there is a preponderance of medium-to-large size
items (relative to bin capacity). In that case, the heuristics
perform extremely well, with the unexpected result that they
perform best with very little slack. These results suggest
that when there are a significant number of large items and
very little slack, the problem may only be solvable in one
way (or a small number of ways) that is immediately found
by the heuristics as they attempt to pack the bins without
exceeding their capacity. The success rate diminishes a lit-
tle with greater slack but is still quite high (99%). This may

127

mean that there are only a few ways to allocate the large
items to bins, but a number of different ways to attempt to
pack the remaining smaller items. Due to these additional
possibilities, the heuristics may be less likely to find a valid
allocation with their single attempt. Moreover, the hardest
problems are those where the item sizes range from small to
medium or medium-large (e.g., 0-50 and 0-70 in these ex-
periments). The 0-30 range is easier because there are many
small items, allowing many valid allocations.

RACE employs the analysis above to determine when to
terminate a particular algorithm. For example, when the
components tend toward medium-to-large resource require-
ments, and the heuristics fail to find an allocation, RACE
assumes that the components most likely cannot be allo-
cated, so it does not bother expending additional computa-
tion searching for a solution. Conversely, if the component
resource requirements are all between 0% and 50% with lit-
tle slack (0-10%), then RACE runs the heuristics with back-
tracking for a longer duration before terminating the execu-
tion.

4 Concluding Remarks
The work presented in this paper provides an empirical

evaluation of several multi-capacity bin-packing heuristics
for resource allocation to identify performance patterns as-
sociated with these heuristics. These patterns provide a ba-
sis for our RACE adaptive resource management framework
to select an appropriate suite of resource allocation methods
based on the resource requirement characteristics of appli-
cation components. This selection can be done at design
time or runtime.

The lessons learned from our work can be summarized
as follows:

Use a suite of heuristics. Analysis of the heuristics pre-
sented in Section 3 shows that the performance of a given
heuristic depends on (1) the sorting method used to order
the items and (2) the distribution of the item sizes and slack
(difference between the bin capacities and the sum of item
sizes). Moreover, no heuristic consistently out-performs all
others. To increase the likelihood of successful runtime
resource allocation in DRE systems, an adaptive resource
management framework, such as RACE, should employ a
suite of algorithms/heuristics that execute in parallel.

Spend time wisely in searching for an allocation. In
addition to using each of these heuristics as a single-shot
attempt to find an allocation, further computation may be
fruitful in certain cases where the heuristics do not immedi-
ately find a solution. For example, our results suggest there
is little benefit to using additional computation when the
input contains a preponderance of medium and large com-
ponents relative to node capacity (e.g., with the 0-100 dis-
tribution the heuristics found a solution almost every time
one existed).

Similarly, when there is a great deal of slack between

component resource requirements and total system re-
sources, the heuristics were likely to find a solution, if
one existed, and further computation would not improve
performance. Moreover, when the heuristics are extended
to perform multiple attempts at finding an allocation (e.g.,
through backtracking or local search), our results suggest
that the most efficient solution will be to provide some of
the heuristics more computational resources/time than oth-
ers.

Classify input to dynamically create weighted heuris-
tic suite. Based on our experiment results, it appears that
an effective and efficient process for allocating system re-
sources to application components involves (1) inspecting
and analyzing component resource requirements to classify
the input item distribution and (2) weighted selection of a
suite of allocation algorithms/heuristics that are most likely
to find a valid allocation of system resources. While the
relative weight given to the heuristics could be set based
on system-wide availability of components (e.g., at design
time), a more flexible solution is to dynamically adjust the
weights at runtime as applications are provided for alloca-
tion. RACE can characterize the input application based
on component resource requirements and adjust the weights
dynamically to efficiently find a valid allocation.

In future work, we will test the performance of multi-
capacity bin-packing heuristics on a wider range of input
distributions, including normal distributions with a variety
of means and variances. We will also classify input patterns
for which particular heuristics are likely/unlikely to succeed
with additional backtracking or local search computation.
This classification will help RACE support a wider range of
systems and applications by improving the efficiency and
effectiveness of dynamic resource allocation.

The implementations of RACE and the resource allo-
cation heuristics evaluated in this paper are available as
open-source software from deuce.doc.wustl.edu/
Download.html and www.dre.vanderbilt.edu/

˜nilabjar/Allocation, respectively.
References

[1] C. P. Robert and G. Casella. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[2] N. Shankaran, D. C. Schmidt, Y. Chen, X. Koutsoukous, and
C. Lu. The Design and Performance of Configurable Com-
ponent Middleware for End-to-End Adaptation of Distributed
Real-time Embedded Systems. In Proc. of the 10th IEEE Inter-
national Symposium on Object/Component/Service-oriented
Real-time Distributed Computing (ISORC 2007), Santorini Is-
land, Greece, May 2007.

[3] A. Srivastav and P. Stangier. Tight approximations for re-
source constrained scheduling and bin packing. In Proceed-
ings of the 4th Twente Workshop on Graphs and Combinato-
rial Optimization, pages 223–245, New York, NY, USA, 1997.
Elsevier North-Holland, Inc.

128

